Mostra de Iniciação Científica e Tecnológica do IFSC 2024

TÍTULO

Em busca dos átomos

AUTORES

Gerson Gregório Gomes Helena Rosa de Souza José Miguel de Oliveira Hansel Rafaela Koerich Elias

RESUMO

Este projeto consiste no estudo teórico e experimental do movimento browniano. A importância desse fenômeno está relacionada ao debate científico ocorrido no início do séc. XX sobre a existência dos átomos, que veio decidir a questão em favor da hipótese atômica. Para tal estudo será construído um aparato experimental, o projetor de gota. O projeto visa à formação geral de um aluno(a) de nível médio e proporciona o desenvolvimento de atitudes científicas através de suas múltiplas abordagens.

PALAVRAS-CHAVE

átomos, número de Avogadro, físico-química

GRANDE ÁREA

CIÊNCIAS EXATAS E DA TERRA (10000003)

ÁREA

FÍSICA (10500006)

INTRODUÇÃO E OBJETIVOS

A hipótese atômica remonta aos filósofos gregos de 2500 anos atrás, porém, só foi aceita pela ciência, da forma como a conhecemos hoje, há pouco mais de 100 anos. Tamanho hiato suscita imediatamente a questão: o que causou esse "atraso"? Este projeto visa abordar esse tema, num estudo, ao mesmo tempo, histórico, teórico e experimental, acessível a um estudante de nível médio, de um curso técnico do IFSC Após uma breve revisão histórica sobre o atomismo será construído um aparato experimental, o projetor de gotas, e sua eficiência será comparada com a de um microscópio comum. Também será

realizado um estudo da teoria do movimento browniano, a fim de melhor compreender o experimento e e sua análise. O objetivo geral deste projeto é o estudo teórico e experimental do movimento browniano. Os objetivos específicos são: conhecer o desenvolvimento histórico da hipótese atômica e sua importância para a ciência atual; construir um aparato experimental, o projetor de gotas, para a observação do movimento browniano e comparálo com um microscópio comum; observar o movimento browniano e realizar medidas das grandezas de interesse envolvidas nesse fenômeno; a partir do estudo dos dados experimentais obter uma estimativa para o número de Avogadro.

METODOLOGIA

O projeto iniciou com o estudo histórico da hipótese atômica, desde a ideia original dos gregos na antiguidade até o início do séc. XIX, seguindo com os trabalhos teóricos de Einstein e experimentais de Perrin, respectivamente. Na sequência foi realizada a montagem do aparato experimental, o projetor de gota, a preparação das soluções para o estudo do movimento browniano e a observação do fenômeno, tanto com o aparato quanto com os microscópios disponíveis nos laboratórios, comparando-os. Uma simples observação não apresentou dificuldades, porém, não se pode dizer o mesmo da realização de medidas. Finda essa etapa, para que os estudantes pudessem melhor compreender o experimento realizado e sua análise, foram dadas aulas onde apresentando o conceito de derivada e integral, além da dedução da equação para a obtenção do número de Avogadro. Finalizando, foi feita a análise dos resultados obtidos e as conclusões, redigindo o relatório final. A dinâmica do trabalho com o orientando(a) consistiu de reuniões semanais com o orientador. Na parte experimental, embora o(a)s estudantes tivessem a autonomia para trabalharem sozinho(a)s de acordo com a sua disponibilidade de horários e também dos laboratórios a serem utilizados, todas as medidas foram realizadas conjuntamente com o orientador.

RESULTADOS

Realizamos o estudo teórico e experimental do movimento browniano. Na parte histórica iniciamos com a leitura do livro de Caruso [1]. O estudo da teoria envolvida na descrição do fenômeno foi realizado utilizando o livro do Moysés 2 [2]. Para que os estudantes conseguissem apreender os conceitos envolvidos foi necessário fazer uma breve introdução ao cálculo. Foram dadas aulas onde foram apresentados o conceito de derivada e integral, com algumas aplicações imediatas, além da dedução da equação para a obtenção do número de Avogadro. Para a montagem do projetor de gota [3] utilizamos o material disponível no laboratório: seringas, manqueiras, hastes, garras, béqueres, termômetro e trena. O laser foi gentilmente cedido pelo professor do DAE e técnico Eberte F. da Silva Cunha. Foram preparadas diversas soluções e feitas observações no microscópio do laboratório de biologia do campus. Constatamos que o movimento browniano é mais facilmente observável com o projetor de gota porém, a medição dos deslocamentos da partícula, é bastante difícil de se realizar. Os deslocamentos foram obtidos com o auxílio do software livre Tracker. Assim, a grandeza de interesse, o deslocamento quadrático médio, rrms, da partícula browniana foi obtido e pudemos calcular o número de Avogadro, NA, através da equação [2], NA = 4 R T t / 6 π η a rrms, (R cte universal dos gases, T temperatura, t tempo, η viscosidade e a raio da partícula browniana). Nossa melhor amostra foi uma solução de 0,100 g de açúcar demerara em 50,0 ml de água deionizada à 1,1 °C. O raio estimado da partícula foi de 5,1x10-5 m e o maior tempo de observação foi de 16,1 s. As maiores dificuldades encontradas foram na obtenção do rrms. O Tracker não rastreava corretamente a partícula devido à baixa resolução da imagem e os pontos tiveram de ser marcados manualmente com o mouse. Foram registrados 486 pontos e o valor do número de Avogadro obtido ficou várias ordens de grandeza abaixo do valor esperado.

CONSIDERAÇÕES FINAIS

Encontramos grandes dificuldades para a obtenção da grandeza de interesse, o número de Avogadro. As partículas eram pouco visíveis e poucas tinham nitidez suficiente para que o programa acompanhasse o movimento. Os deslocamentos da partícula browniana eram realmente muito pequenos para serem medidos. Os pontos tiveram de ser marcados manualmente o que já resulta em uma imprecisão na localização dos mesmos. A melhor estimativa obtida para o número de Avogadro ficou ordens de grandeza distante do valor de referência. Entretanto, consideramos um resultado razoável, tendo em vista que o projeto não previa nenhum auxílio financeiro e foi executado com um material muito simples. Para além do resultado final considero, que o maior ganho seria na formação dos estudantes, que puderam realizar o trabalho, o que só não foi plenamente atingida devido à rotatividade dos bolsistas. Entretanto, cada bolsista, em sua etapa de participação, teve a oportunidade de complementar e melhorar a sua formação.

LINK DO VÍDEO

https://drive.google.com/file/d/1WvDGWwnIj3L53RWQ RzP8PeUhkisF88B/view?usp=drive link

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] Caruso, F. e Oguri V., Física Moderna Origens Clássicas e Fundamentos Quânticos, Ed. Campus, Rio de Janeiro, 2006.
- [2] Nussenzveig, H. Moysés, Curso de física básica, 2: fluidos, oscilações e ondas, calor, Ed. Edgara Blucher, São Paulo, 2002.
- [3] Dorta, M. P.; Souza, E. C. P.; Muramatsu, M. O projetor de gotas e suas diversas abordagens interdisciplinares no Ensino de Física. Revista Brasileira de Ensino de Física, São Paulo, v. 38, n. 4, e4503, 2016

AGRADECIMENTOS

A equipe do projeto agradece ao Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq e ao Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina – IFSC, pelo apoio recebido, viabilizando a execução das atividades do projeto de pesquisa.