Mostra de Iniciação Científica e Tecnológica do IFSC 2024

TÍTULO

Análises bromatológicas da alga kappaphycus alvarezzi (KA) cultivada no sul de Florianópolis

AUTORES

Marcel Piovezan
Ana Clara dos Santos Colares
Marcelo Miguel Alves da Silva
Mariana Jann Luna
Mayara da Silva
Tula Beck Bisol
Renata Pietsch Ribeiro

RESUMO

A alga Kappaphycus alvarezii possui componentes relevantes para a indústria. Seu potencial em produtos de valor agregado só pode ser definido através da determinação de sua composição, sendo esse o objetivo principal do projeto. Utilizou-se de análises bromatológicas e constatou-se que a alga estudada é composta de 93,55% de água, 3,62% de cinzas, 8,86% de proteínas em amostra seca e 0,44% de lipídios (entre outros componentes) podendo ser usada como matéria prima para suplementos proteicos.

PALAVRAS-CHAVE

alga vermelha, biomateriais, bromatologia

GRANDE ÁREA

CIÊNCIAS EXATAS E DA TERRA (10000003)

ÁREA

QUÍMICA (10600000)

INTRODUÇÃO E OBJETIVOS

As algas, além de serem uma matéria prima alternativa, ajudam a despoluir a água, pois têm a capacidade de absorver nitrogênio e fósforo, poluentes presentes no esgoto, que favorecem a eutrofização (FAPESP, 2017).

Dentre as algas, pode-se citar a Kappaphycus alvarezii (K.A.), uma macroalga vermelha da família Solieriaceae, caracterizada por talos cilíndricos de coloração variável. É uma alga multicelular proveniente da região tropical do Indo-Pacífico (Hayashi, 2007). Atualmente, um dos seus principais usos comerciais é a carragena (Naseri, 2019), um carboidrato usado nas indústrias farmacêutica, alimentícia e cosmética como espessante.

A alga K.A., produzida em Santa Catarina, teve seu cultivo autorizado em 2020 e vem mostrando um aumento na sua produção. Esta cultura pode ser realizada em conjunto com o cultivo de ostras e mexilhões, tornando-se mais um produto da maricultura de Santa Catarina (Epagri, 2020).

Tendo em vista os benefícios de algas como K.A., é de extrema importância realizar o estudo de sua composição química, possibilitando o desenvolvimento de cada vez mais produtos com valor agregado e exploração de novas potencialidades do uso desse biomaterial, além de ajudar na sua parametrização físico-química.

Sendo assim, essa pesquisa buscou determinar a composição química de amostras de algas da espécie K.A. coletadas de fazenda marinha na região sul de Florianópolis, além de delinear suas possíveis aplicações tecnológicas.

METODOLOGIA

Foram coletados 5 kg de alga, lavados com água deionizada, secos com toalhas, triturados e congelados a -4°C. Não foi congelada a amostra para a análise de umidade (Instituto Adolfo Lutz 012/IV, 2008). Essa análise foi realizada utilizando método gravimétrico, no qual 8 q da amostra foram pesados em um cadinho tarado e deixados em estufa (105 °C) até peso constante. A análise de cinzas foi feita a partir do resíduo da análise de umidade (Adolfo Lutz 018/IV, 2008), na qual calcinou-se a amostra (550 °C) até sobrarem somente cinzas. A partir delas, foram feitas análises de minerais: Na e K (Fotometria de chama), Cl (Volumetria), Fe (Espectrometria) e Ca (Permanganometria). Para a proteína bruta, aplicouse o método micro-Kjeldahl (digestão de 0,5 g da amostra seca com ácido sulfúrico, seguido de destilação em destilador de nitrogênio e posterior titulação com ácido clorídrico). Ademais, a análise de lipídios totais foi feita através da extração dos lipídeos com solventes orgânicos (BLIGH; DYER 1959). A análise de fibra bruta foi efetuada pelo método Weende (digestão ácida seguida de básica da amostra, e depois sua calcinação, obtendo-se o valor da fibra bruta por gravimetria). Os carboidratos foram determinados por diferença. Todas as análises foram realizadas em triplicata. Os resultados foram comparados com a literatura (Vieira, 2022). Após a finalização das análises, foram escritos protocolos detalhados sobre cada procedimento.

RESULTADOS

Após as análises, foram obtidos os seguintes teores para a K.A.: 93,5±0,3% de umidade; 3,6±0,1% de cinza; 209±23 mg/100g de Na; 1438±72 mg/100g de K; 1162,8±35,6 mg/100g de Cl; 0,024±0,008 mg/100g de Fe; 23,8±6,6 mg/100g de Ca; 8,8±0,4% de proteínas na alga seca; 0,44±0,03% de lipídeos totais na alga seca; 0,49±0,27% de fibra bruta e, por diferença, 1,5% de carboidratos totais. Os resultados foram semelhantes aos da literatura (Vieira, 2022), na qual certas variações podem ocorrer pelas diferenças do local e das condições climáticas no momento da coleta (Santos, 2023).

Segundo os resultados obtidos, majoritariamente a alga K.A. é composta de água e voláteis (93,55%). Além disso, ela apresenta um valor de 3,62% de cinzas, que é explicado pela presença significativa de sais minerais na alga, como os cloretos de sódio e de potássio.

Entre sódio, cloreto e potássio, constatou-se que a alga possui um baixo teor de sódio (209 mg/100g) e altos teores de cloreto e de potássio (1162,8 e 1438 mg/100g, respectivamente). Sendo assim, a alga tem potencial para ser usada como fonte de cloreto de potássio, um substituto dos sais de sódio na alimentação, que contribui com a diminuição do consumo nocivo de excesso de sódio (NASCIMENTO. et al., 2007). Os demais minerais analisados (Fe e Ca), embora presentes na alga, se encontram em quantidades consideravelmente baixas (0,0243 mg/100g e 23,8 mg/100g, respectivamente).

Ademais, na alga seca, o teor de proteínas é alto (8,86±0,43%), enquanto o de lipídios baixo é (0,44±0,03 %), o que indica que a KA pode ser utilizada como suplemento alimentar proteico. Entretanto, ela não se caracteriza como fonte de fibra bruta, apresentando menos de 0,5% em alga in natura.

De acordo com as análises experimentais, a Kappaphycus alvarezii possui 1,5% de carboidratos. Dentre eles, o mais relevante é a carragena, um poligalactano com alto potencial espessante (HARGREAVES, 2013).

CONSIDERAÇÕES FINAIS

A composição química de amostras de algas da espécie K.A. foi determinada e suas possíveis aplicações tecnológicas foram delineadas. Constatou-se que a Kappaphycus alvarezii é rica, principalmente, em água, cloreto, potássio e proteínas, tendo potencial de aplicação e desenvolvimentos de diferentes produtos como suplementos alimentares e cloreto de potássio para alimentação. Além disso, a alga pode ser utilizada como biomaterial para diversos fins industriais e como grande fonte de carragena. Ressalta-se a importância da avaliação constante dos parâmetros bromatológicos para utilização dessa alga para consumo ou para fins industriais, visto que sua composição é variável e dependente de fatores intrínsecos ao local de cultivo, clima e manejo.

LINK DO VÍDEO

https://www.youtube.com/watch?v=ZkVhQUFesEM

REFERÊNCIAS BIBLIOGRÁFICAS

ADOLFO LUTZ. Métodos Físico-Químicos para Análise de Alimentos. 4. ed. São Paulo: Instituto Adolfo Lutz, 2008

BLIGH, E.G.; DYER, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol, v. 37, n. 8, p. 911-917, 1959.

EPAGRI. Governo Federal autoriza o cultivo comercial de macroalgas em Santa Catarina – Epagri, 2020. Disponível em:

https://www.epagri.sc.gov.br/index.php/2020/01/27/governo-federal-autoriza-o-cultivo-comercial-de-macroalgas-em-santa-catarina/. Acesso em: 02 out. 2024.

FAPESP. Algas são usadas para despoluir esgoto e produzir adubo. Agência FAPESP, 2017. Disponível em: https://agencia.fapesp.br/algas-sao-usadas-para-despoluir-esgoto-e-produzir-adubo/2625. Acesso em: 02 out. 2024.

HARGREAVES, Paulo; PEREIRA, Nei; CARLOS, Antonio; et al. Produção de etanol a partir de Kappaphycus alvarezii -Biocombustível de terceira geração. [s.l.: s.n.], 2013. Disponível em:http://www.tpqb.eq.ufrj.br/download/producao-de-etanol-a-partir-de-kappaphycus-alvarezii.pdf Acesso em: 23 out. 2024.

NASCIMENTO R. et al. Substituição de cloreto de sódio por cloreto de potássio: influência sobre as características físico-químicas e sensoriais de salsichas. Alim. Nutr., Araraquara, v.18, n.3, p. 297-302, 2007.

NASERI, A., HOLDT, S. L., & JACOBSEN, C. Biochemical and nutritional composition of industrial red seaweed used in carrageenan production. Journal of Aquatic Food Product Technology, 28(9), 967-973, 2019 Disponível em: https://doi.org/10.1080/10498850.2019.1664693.>Acesso em: 02 out. 2024.

SANTOS, A. et al. Análise da composição química da macroalga Kappaphycus alvarezii e de seus subprodutos produzida em Santa Catarina. Informe técnico. n. 021, ago. 2023.

VIEIRA, M. S. Caracterização físico-química da alga Kappaphycus Alvarezii in natura e desidratada. 2022. Trabalho de Conclusão do Curso (Graduação em Ciência e Tecnologia de Alimentos) - Universidade Federal de Santa Catarina, Florianópolis, 2022.

AGRADECIMENTOS

A equipe do projeto agradece ao Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq e ao Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina – IFSC, pelo apoio recebido, viabilizando a execução das atividades do projeto de pesquisa.