IFSC VERIFICA Data de Publicação: 27 ago 2024 13:52 Data de Atualização: 27 ago 2024 14:47
A produção de energia é um dos grandes desafios da humanidade: com o aumento da população e o desenvolvimento tecnológico, a demanda por energia é cada vez maior, tanto para o transporte quanto para a produção da energia elétrica para os mais diversos fins, da indústria às residências.
Ao mesmo tempo que a demanda por energia cresce, as mudanças climáticas exigem que o mundo pense na transição energética, abandonando fontes poluentes e baseadas em combustíveis fósseis e investindo em fontes sustentáveis e com baixa emissão de gás carbônico. Diversas tecnologias surgem a todo momento, como eólica, solar, hidrogênio verde, marítima, entre outras. O Brasil é o país conhecido por ter uma matriz energética mais limpa, porém, a produção em larga escala de energia elétrica é uma preocupação crescente.
Nesta edição do IFSC Verifica, apresentamos as vantagens e desvantagens da energia nuclear, uma fonte estigmatizada por alguns e defendida por outros como a “energia do futuro”. Por um lado, pode ser considerada uma energia limpa, pois não emite gás carbônico na atmosfera e exige áreas menores para ser produzida. Por outro, apresenta o perigo de contaminação radioativa em caso de acidentes, o lixo nuclear, o perigo do uso da energia nuclear para construção de armas, e a dependência da mineração para obtenção de minerais radioativos, como o urânio.
Conversamos com a professora Daiane Cristini Barbosa de Souza, doutora em Tecnologia Nuclear e professora do curso superior em Radiologia e do mestrado em Proteção Radiológica do Câmpus Florianópolis, que nos contou como a energia nuclear funciona e suas vantagens e desvantagens em relação a outras fontes de energia.
Também conversamos com os professores doutores em Física do Câmpus São José, Marcelo Girardi Schappo e Vinicius Jacques, para falar sobre o futuro da energia atômica e suas implicações econômicas e políticas.
Vamos responder às seguintes perguntas:
- O que é a energia nuclear e como ela é utilizada na produção de energia elétrica?
- A energia nuclear pode ser considerada uma fonte de energia sustentável?
- Quais países mais utilizam energia nuclear?
- Quais as vantagens da energia nuclear?
- Como é realizado o manejo do rejeito radioativo?
- Muitas vezes, a energia nuclear é associada a acidentes nucleares, como Chernobyl, na Ucrânia (1986), e em Fukushima, no Japão (2011), devido ao tsunami. Esses dados são preocupantes?
- Quais as questões políticas envolvidas na produção de energia a partir de fontes nucleares?
- Há países revendo o uso de energia nuclear. A Alemanha está reduzindo o número de reatores. Qual a tendência?
- Há o perigo dessa energia ser utilizada para produção de bombas nucleares?
- Qual o futuro da energia nuclear?
O que é a energia nuclear e como ela é utilizada na produção de energia elétrica?
A professora Daiane explica que a energia nuclear é uma forma de energia que vem do núcleo de átomos. Obtém-se a energia nuclear a partir de uma série de elementos químicos, também chamados de radioisótopos, que são encontrados no solo, como tório e plutônio, sendo o urânio o mais usado. O Brasil é um dos países do mundo que mais têm urânio e é um dos quatro que dominam a tecnologia de extração e processamento desse minério, além de Rússia, China e Estados Unidos. A mineração de urânio no Brasil está concentrada principalmente em Caitité, na Bahia, e é feita pela estatal Indústrias Nucleares Brasileiras (INB).
Para que o urânio encontrado na natureza possa ser usado pelas usinas nucleares, ele precisa passar por um processo chamado de enriquecimento, que consiste em separar os vários tipos de urânio presentes no solo e usar o mais radioativo para ser enriquecido, ou seja, a partir de processos químicos e físicos, aumentar a concentração desse material. No Brasil, o enriquecimento de urânio é realizado na fábrica de Resende, no Rio de Janeiro.
Depois de separado e enriquecido, o urânio é transformado em combustível para as usinas nucleares. O combustível nuclear consiste em pastilhas de 2 a 3 centímetros de altura, colocadas em um conjunto de cerca de 20 varetas, que vão formar o elemento combustível do núcleo do reator da usina nuclear. O núcleo da usina consiste em um vaso de pressão, cercado por água, que vai auxiliar no processo de reação nuclear. A água que fica em contato com o combustível nuclear participa da reação e é aquecida a altíssimas temperaturas, em torno de 700 graus celsius, aquecendo outro circuito de água que passa por fora do reator, sem contato com a radioatividade, e que por sua vez vai fazer funcionar um gerador de energia elétrica.
Esse processo de produção de energia chama-se fissão nuclear, em que se coloca uma fonte de nêutrons que vão colidir com outros átomos do elemento radioativo, quebrar seus núcleos e liberar mais nêutrons, causando uma reação em cadeia e liberando a energia por meio de calor. “É o princípio das locomotivas a vapor, onde o vapor faz o motor funcionar, só que a fonte de calor é outra”, explica a professora Daiane.
A única central nuclear brasileira fica em Angra dos Reis e consiste nas usinas de Angra 1 e Angra 2, em funcionamento, e Angra 3, em construção. A central é administrada pela estatal Eletronuclear.
Veja o vídeo da Eletronuclear e entenda como uma usina nuclear funciona:
A energia nuclear pode ser considerada uma fonte de energia sustentável?
A produção de energia elétrica por meio da fissão nuclear não gera carbono na atmosfera, como, por exemplo, a queima de carvão. Porém, a Agência Nacional de Energia Elétrica (Aneel) a classifica como uma fonte de energia não renovável, pois depende da mineração, ou seja, um recurso finito. A França já a classifica como fonte de energia renovável, pois o urânio usado nas usinas é reprocessado e reaproveitado, o que ainda não acontece no Brasil.
Segundo a professora Daiane, a energia nuclear é considerada de baixa emissão de carbono. Ela não emite gás carbônico na produção de energia, mas em sua cadeia produtiva, como na mineração e transporte desse minério. “Porém, comparada a outras fontes de energia, ela é mais sustentável. Por exemplo, a energia obtida a partir da fissão de um quilo de urânio equivale à energia produzida por 2,5 mil toneladas de carvão mineral”, exemplifica.
Já o professor Marcelo Schappo destaca que “não existe nenhuma forma de produção de energia elétrica que seja 100% limpa. Por exemplo, a energia solar fotovoltaica, que absorve luz solar e gera correntes elétricas sem emitir gases de efeito estufa, não é 100% limpa, pois a produção das placas solares gera gases que emitem gases de efeito estufa”. Também é necessário avaliar a origem do silício usado nas placas e como elas serão descartadas. O professor Vinicius Jacques lembra a construção de usinas hidrelétricas, que obrigam o deslocamento de populações inteiras, alagamento de grandes áreas e consequentes problemas ambientais.
O professor Schappo completa que “não há soluções mágicas. No entanto, quando se trata da emergência climática mundial, onde se visa a diminuir drasticamente as emissões de carbono para atmosfera, a matriz nuclear é uma candidata bastante forte, pois o processo de geração de eletricidade não envolve emissões de gases de efeito estufa, e a ‘fumaça’ que eventualmente pode ser vista saindo dessas usinas é apenas vapor de água que foi utilizada em processos de resfriamento dos componentes do sistema”.
Quais países mais utilizam energia nuclear?
Segundo a Agência Internacional de Energia Atômica (IAEA), atualmente, há 440 reatores nucleares em funcionamento no mundo, além de 61 em construção. A energia nuclear tem participação de 9% na geração global de eletricidade.
Os países com maior participação, tanto em número de reatores quanto em capacidade de geração, são, em ordem: Estados Unidos, França, China, Japão, Rússia, Coréia do Sul, Canadá, Ucrânia, Índia e Espanha.
Na América Latina, apenas Brasil, Argentina e México possuem reatores nucleares. As usinas brasileiras de Angra 1 e 2, em Angra dos Reis, no Rio de Janeiro, produzem cerca de 1% da energia consumida no país. Com a finalização da construção de Angra 3, esse percentual pode chegar a 3%.
Daiane afirma que o Brasil tem a vantagem de ter a matriz energética para produção de energia elétrica bastante diversificada, começando pelas usinas hidrelétricas (53,86%), em seguida a eólica (15,11%), fóssil (14,81%), biomassa (8,56%) solar (6,68%) e nuclear (0,98%), o que é uma vantagem competitiva em relação a outros países.
Quais as vantagens da energia nuclear?
Áreas pequenas: Além de ser uma produção de baixa emissão de gás carbônico, outra vantagem da energia nuclear, segundo a professora Daiane, é a produção de energia em áreas muito pequenas se comparada a outras fontes, como as hidrelétricas. Em relação às usinas solares, para produzir uma unidade de energia, a energia solar precisa de mais de 17 vezes mais material e 46 vezes mais terra que a energia nuclear, segundo dados da (IAEA).
O professor Schappo explica que a IAEA vem estudando e desenvolvendo reatores nucleares de fissão para geração de energia elétrica em menor escala. Eles estão sendo desenvolvidos para ter um tamanho menor que os convencionais e com possibilidade de serem construídos de forma modular, de tal maneira que facilite a fabricação dos componentes essenciais longe do local de instalação. “Assim, poderemos ter novos reatores com menor capacidade de geração elétrica, mas que podem atender localidades rurais e áreas industriais”. Ainda segundo o professor, há pesquisas para aplicações de energia nuclear em escalas ainda menores, como baterias de celulares que não necessitariam de recarga.
Independente do clima: a energia nuclear pode ser gerada todos os dias do ano, ininterruptamente, ao contrário da energia solar, hidrelétrica e eólica, que dependem do clima e regime de chuvas. “Com as mudanças climáticas, muitas vezes o país tinha uma maior frequência de chuvas e agora tem uma frequência reduzida, então, essa interdependência do clima pode ser um problema na questão energética”, destaca a professora Daiane.
Abundância de urânio: o urânio é um material abundante na crosta terrestre, muito mais que ouro, platina e outros metais de alto valor comercial. Seria necessário um período de aproximadamente 100 a 150 anos para esgotar os recursos de urânio atualmente considerados economicamente recuperáveis.
O Brasil tem o minério de urânio e a tecnologia para enriquecer o material foi desenvolvida pelo Centro Tecnológico da Marinha em São Paulo (CTMSP) e pelo Instituto de Pesquisas Energéticas e Nucleares (IPEN). As centrífugas de urânio desenvolvidas pelo Brasil são segredo de Estado.
O professor Schappo lembra ainda que existem outros materiais combustíveis em estudo além do urânio, como o tório, que podem participar das reações nucleares e contribuir para geração de energia do processo de tal forma que demande menor quantidade inicial de urânio e melhorando a condição dos rejeitos radioativos gerados no final do processo.
Segurança: a professora Daiane explica que, comparada a outras fontes de energia, a nuclear é uma das mais seguras. Apesar de acidentes nucleares serem graves, eles são raros, e os processos de mineração e enriquecimento de urânio são mais seguros que de outras fontes. O número de acidentes relatados é bem inferior do que, por exemplo, no uso do carvão. Em termos de comparação, a indústria do carvão tem taxa de mortalidade de 32,72 mortes por terawatt-hora (equivalente ao consumo anual de 150 mil cidadãos da União Europeia), enquanto na produção de energia nuclear esse índice é de 0,03%. Ou seja, a produção de energia a partir do carvão está associada ao maior número de mortes no mundo.
Veja na tabela abaixo o equivalente em mortes de diversos tipos de fontes de energia. Apenas a energia solar é considerada mais segura que a nuclear:
Como é realizado o manejo do rejeito radioativo?
O rejeito radioativo, ou lixo radioativo, é o material que ainda emite radiação, mas não é mais útil. No Brasil, há a norma 8.01 da Comissão Nacional de Energia Nuclear (CNEN) para o manejo do rejeito radioativo, tanto para usinas nucleares quanto para outros usos, como na área hospitalar. Além disso, a CNEN mantém unidades regionais que recebem os rejeitos radioativos.
A professora Daiane explica que o urânio 235, o mais utilizado em usinas nucleares, tem meia vida de milhões de anos. O decaimento do rejeito de urânio é calculado em centenas de anos. Por isso, o manejo de rejeito de usinas nucleares necessita de um planejamento específico, com a previsão de uma área para depósito de rejeitos, preparação do local, entre outros.
No caso das usinas de Angra, o combustível nuclear já usado é armazenado no próprio reator, em uma piscina que recebe esses rejeitos. A Eletronuclear, que administra Angra, está desenvolvendo projeto para depósito de rejeitos a seco. Veja mais sobre o projeto de Gerenciamento de Resíduos.
O professor Marcelo Schappo ressalta que a quantidade de resíduos de usinas nucleares não é tão grande quanto se imagina: “Apenas para dar um exemplo prático: ao longo de uma operação de 20 anos de uma usina nuclear de fissão de porte similar às de Angra, a quantidade de rejeitos gerados poderia ser acondicionada em um espaço do tamanho de um campo de futebol”. Já o professor Vinicius lembra que o rejeito nuclear pode ficar ativo por milhares de anos e tratá-lo de forma correta “é um compromisso nosso com as gerações futuras”.
Mesmo assim, os professores entrevistados são unânimes em dizer que há uma necessidade de encontrar formas seguras de armazenar os rejeitos radioativos, além de encontrar outras alternativas, como desenvolver reatores que diminuam a quantidade de rejeitos e/ou reaproveitem esse material, seja na própria produção de energia ou em outras formas, como na medicina ou na agricultura.
O armazenamento em minas desativadas no interior de montanhas, usar processos químicos para retirar materiais radioativos específicos, diminuindo o tempo de armazenamento de rejeitos, e a utilização de reatores mais modernos, que podem produzir mais energia com menos combustível, ou mesmo substituição de urânio por outros materiais, como o tório, são algumas das soluções a serem desenvolvidas e implementadas.
Muitas vezes, a energia nuclear é associada a acidentes nucleares, como Chernobyl, na Ucrânia (1986), e em Fukushima, no Japão (2011), devido ao tsunami. Esses dados são preocupantes?
Segundo a professora Daiane, os acidentes em usinas nucleares não são frequentes. Sobre o caso específico de Chernobyl, não há possibilidade de haver acidente semelhante, pois a tecnologia utilizada naquela construção já é ultrapassada: o reator de Chernobyl era do tipo BWR, de água fervente. Atualmente, a maioria dos reatores utilizados são PWR, de água pressurizada, mais modernos e seguros, como os de Angra.
Outras diferenças também faziam aquele tipo de tecnologia ser mais perigosa. Por exemplo, as varetas que introduziam elementos químicos para parar a reação nuclear do reator em caso de acidente eram retiradas e introduzidas manualmente, e hoje isso acontece de forma automática. “Hoje, se um reator tiver um acidente, com um terremoto ou alguma coisa desse nível, os reatores PWR, eles têm varetas carregadas com boro, uma substância química que absorve facilmente nêutrons. Então, derrubam-se varetas de boro no reator, o que chamamos envenenamento por boro, o que desliga o equipamento”, explica. Pensando no exemplo brasileiro, os vasos de pressão que comportam os reatores nucleares das usinas Angra 1 e 2 foram construídos para resistir a grandes impactos, como a queda de um avião. “Hoje em dia, não há possibilidade de ocorrer um acidente como o de Chernobyl porque temos outros tipos de reator nuclear. Sobre Fukushima (Japão, 2011), foi um acidente muito diferente e de magnitude menor. Como Chernobyl, jamais”.
Além disso, o que contribuiu para a magnitude do desastre de Chernobyl foram erros humanos durante a realização de testes de qualidade nos dias que antecederam o desastre, em 28 de abril de 1986, e a demora em se emitir o alerta de que algo errado estava ocorrendo.
O professor Vinicius Jacques lembra que antes de Chernobyl já haviam acontecido desastres nos Estados Unidos e Canadá, mas não com tanta repercussão. Porém, foi a partir de Chernobyl que se acendeu o alerta ambiental sobre os perigos da energia nuclear.
Quais as questões políticas envolvidas na produção de energia a partir de fontes nucleares?
O professor Vinicius Jacques estuda os aspectos políticos e históricos da energia nuclear. Ele acredita que o uso da energia nuclear é “caminho sem volta”, ao mesmo tempo em que se diz crítico da forma como as políticas públicas que tratam do assunto são conduzidas.
Ele conta que a comunidade científica já vinha trabalhando com a fissão de urânio e tório como fonte de energia por volta dos anos 30. Paradoxalmente, foi a partir das bombas nucleares lançadas sobre Hiroshima e Nagasaki, em agosto de 1945, que se intensificaram as pesquisas e o uso da energia nuclear para a produção de eletricidade. “Naquela época, para a grande maioria da população do planeta, a energia atômica (que hoje chamamos de nuclear) e a bomba atômica eram a mesma coisa”, conta.
Foi nesse cenário que surgiu a ideia, principalmente dos Estados Unidos, de “pacificar o átomo”, ou seja, fomentar a utilização da energia nuclear para fins pacíficos e evitar a proliferação de armas nucleares. Já em 1946, os EUA criam a Lei de Energia Atômica e o projeto Manhattan, que construiu as bombas nucleares, passa da gerência militar para a civil, sob o nome de Comissão de Energia Atômica.
Assim, os EUA começam a buscar o controle sobre o uso desse tipo de energia em várias partes do mundo, inclusive o Brasil, com acordos para fornecimento de urânio. Esses acordos e influências norte-americanas se intensificam com a Guerra Fria, tentando impedir a União Soviética de dominar essa tecnologia e usá-la para fins bélicos. Na mesma época surge a Comissão de Energia Atômica na própria recém-criada Organização das Nações Unidas (ONU), com o objetivo de controlar as jazidas de urânio e produção de material radioativo em todo o mundo.
O Brasil foi convidado a participar das reuniões da ONU por ser um dos maiores detentores de minérios radioativos. O antigo acordo com os EUA, firmado por Getúlio Vargas, foi suspenso. Um novo acordo surgiu, com o governo militar de Eurico Gaspar Dutra, em que o Brasil se comprometia em fornecer minérios radioativos aos Estados Unidos em troca de tecnologia, o que acabou não acontecendo.
Ao mesmo tempo, a União Soviética começa a dominar a tecnologia nuclear e detona a primeira bomba, em 1949. Isso obriga os Estados Unidos a mudarem sua estratégia, e em 1953 o então presidente dos Estados Unidos, Dwight D. Eisenhower, profere um discurso na Assembleia da ONU intitulado “Átomos para a Paz”. A partir de então intensifica-se o incentivo do uso da energia nuclear para os fins pacíficos, como a geração de energia. “É uma cartada política e econômica também, para usar justamente pós-segunda guerra a energia nuclear como motor econômico dos Estados Unidos”, explica o professor Vinicius. Assim, a antiga União Soviética e os Estados Unidos disputam mercado pela tecnologia e “se limpa a bomba atômica, não se fala mais disso”, destaca o professor.
Vinicius lembra ainda que em 1956 o Congresso Brasileiro instaurou uma Comissão Parlamentar de Inquérito para apurar a legalidade dos acordos. Segundo ele, o Brasil poderia ser uma grande potência mundial na produção de energia nuclear se não fossem os “acordos e desacordos” firmados pelo país e o não desenvolvimento de uma indústria nacional robusta. Ele cita nomes de cientistas que tiveram um papel importante no Brasil, como César Lattes, José Leite Lopes e Elisa Frota Pessoa, e iniciativas como a criação da Comissão Nacional de Energia Nuclear (CNEN). Porém, muito ainda poderia ser feito, como criar políticas públicas para que os cientistas de ponta fiquem no Brasil. O professor acredita que o país precisa de um planejamento a longo prazo sobre energia nuclear e manejo de resíduos, que seja “uma política de Estado, e não de governo”.
Há países revendo o uso de energia nuclear. A Alemanha está reduzindo o número de reatores. Qual a tendência?
Segundo a professora Daiane, apesar de as usinas nucleares serem mais seguras que outras formas de produção de energia, há movimentos que pedem pela desativação das usinas nucleares devido ao perigo de acidentes e problemas com os rejeitos.
Ela acredita haver um “estigma” quanto ao uso desse tipo de energia e muitas vezes a população não é devidamente informada sobre os benefícios da energia nuclear. “Muitos países como a Alemanha deram um passo atrás na energia nuclear por questões ideológicas. Mas, no cenário que temos hoje na Alemanha, devido à guerra na Ucrânia, eles estão tendo um revés muito grande. No inverno eles têm um custo energético muito alto e, agora, eles estão tendo dificuldades em manter a fonte de gás natural que era da Ucrânia. Então, deixou de ter usinas nucleares e passou a ter problemas com o fornecimento de gás”, explica a professora.
Segundo Daiane, “os países devem refletir até que ponto vale a pena desativar centrais nucleares e depois ficar à deriva de fontes de energia que não são sustentáveis”.
Há o perigo dessa energia ser utilizada para produção de bombas nucleares?
O professor Vinicius Jacques aponta que enquanto a aplicação pacífica da energia nuclear se expandiu na década de 50, também aumentou seu uso para fins bélicos. Mesmo com iniciativas como o “Átomos para a Paz”, em meados da década de 50 havia cerca de 2,6 mil bombas atômicas no mundo. Ele explica que as bombas nucleares são feitas com plutônio, um subproduto do urânio utilizado nas usinas nucleares. Por isso, existem órgãos internacionais que fazem essa fiscalização em usinas, verificando se a quantidade de urânio que “entra” é a mesma que “sai”, para que não sejam usados em outros fins.
Segundo o professor, a situação atual de guerras pelo mundo faz acender o alerta de um perigo nuclear. “Os conflitos no mundo estão tão latentes, os horrores da Segunda Guerra batem à nossa porta o tempo todo. Temos agora o exemplo da Rússia e da Ucrânia, são conflitos que estão acontecendo de fato”, ressalta. Ele lembra que escolher a matriz energética como estratégia de longo prazo tem implicações políticas, de os países serem governados no futuro por regimes que queiram usar esse potencial para fins não pacíficos e fazer um uso perverso da tecnologia.
Por isso, a utilização da energia nuclear deve ser regulamentada para que seja utilizada para fins pacíficos, além da produção da energia, a disseminação e barateamento do uso em outras áreas, como a medicina e a agricultura.
Qual o futuro da energia nuclear?
A energia nuclear é um caminho sem volta, segundo os professores entrevistados, e assim como o carvão e o petróleo foram as energias dos séculos passados, a nuclear pode ser a do futuro.
Segundo o professor Vinicius, “a população do planeta evolui para demandar cada vez mais energia. Então, não adianta fazer um discurso muito bonito, porque se a gente demanda cada vez mais, a questão é: de onde vai ser gerado isso?”. O professor acredita que algumas matrizes, como a solar, a eólica e a marítima, podem minimizar a falta de energia elétrica, porém, são necessárias fontes de produção em grande quantidade, como a hídrica e a nuclear, sendo que a hídrica só é possível de ser implantada onde há rios e grandes áreas passíveis de serem alagadas.
Pesquisas estão sendo realizadas no mundo todo para tornar o uso da energia nuclear mais eficiente, seguro e barato. Uma dessas vertentes é a pesquisa da fusão nuclear. O professor Schappo explica que se trata de um processo que ocorre naturalmente dentro das estrelas. “Neles, átomos pequenos, como hidrogênio, são submetidos a condições específicas de temperatura e densidade para conseguirem se juntar e formar átomos mais pesados, como o hélio, um processo que também libera energia que pode ser aproveitada na geração de eletricidade”, explica.
Dessa forma, diz o professor Schappo, nas últimas décadas há um esforço intenso de pesquisas internacionais para investigar a viabilidade tecnológica da utilização desse tipo de reator, cuja vantagem é não gerar resíduos radioativos. No final de 2022, uma instituição científica e tecnológica dos Estados Unidos (LLNL) anunciou ter conseguido, pela primeira vez, estabelecer um processo de fusão nuclear autossustentável, no qual a energia gerada na fusão pode servir para manter novas fusões acontecendo, mas, ainda, apenas por um breve intervalo de tempo. “Em outras palavras, a fusão nuclear tem potencial, mas ainda estamos longe do momento em que poderemos usá-la para complementar a matriz energética mundial”, acrescenta.
Quanto ao Brasil, o professor Schappo informa que existem pesquisas no setor nuclear, como as desenvolvidas no Instituto de Pesquisas Energéticas e Nucleares (IPEN), que detém um reator de fissão nuclear para pesquisas, e a Universidade de São Paulo (USP), que abriga um laboratório de Física de Plasmas onde está instalado um reator capaz de estudar o processo de fusão nuclear.
Estude no IFSC
Cursos relacionados à radiologia e produção de energia no IFSC:
- Graduação (bacharelado) em Radiologia
- Superior de tecnologia em Sistemas de Energia
- Mestrado em Proteção Radiológica
- Mestrado em Sistemas de Energia Elétrica
Se quiser receber uma mensagem quando estivermos com inscrições abertas, deixe seu e-mail no nosso Cadastro de Interesse.
Receba os posts do IFSC Verifica
Se você quiser ser informado quando publicarmos nossos posts, deixe seu e-mail no nosso cadastro.
-> Veja tudo o que já publicamos no IFSC Verifica